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OBJECTIVE

To develop and validate a protein risk score for predicting chronic kidney disease
(CKD) in patients with diabetes and compare its predictive performance with a
validated clinical risk model (CKD Prediction Consortium [CKD-PC]) and CKD poly-
genic risk score.

RESEARCH DESIGN AND METHODS

This cohort study included 2,094 patients with diabetes who had proteomics and
genetic information and no history of CKD at baseline from the UK Biobank
Pharma Proteomics Project. Based on nearly 3,000 plasma proteins, a CKD pro-
tein risk score including 11 proteins was constructed in the training set (including
1,047 participants; 117 CKD events).

RESULTS

The median follow-up duration was 12.1 years. In the test set (including 1,047 partic-
ipants; 112 CKD events), the CKD protein risk score was positively associated with in-
cident CKD (per SD increment; hazard ratio 1.78; 95% CI 1.44, 2.20). Compared with
the basic model (age + sex + race, C-index, 0.627; 95% CI 0.578, 0.675), the CKD pro-
tein risk score (C-index increase 0.122; 95% CI 0.071, 0.177), and the CKD-PC risk fac-
tors (C-index increase 0.175; 95% CI 0.126, 0.217) significantly improved the
prediction performance of incident CKD, but the CKD polygenic risk score (C-index in-
crease 0.007; 95% CI 20.016, 0.025) had no significant improvement. Adding the
CKD protein risk score into the CKD-PC risk factors had the largest C-index of 0.825
(C-index from 0.802 to 0.825; difference 0.023; 95% CI 0.006, 0.044), and significantly
improved the continuous 10-year net reclassification (0.199; 95% CI 0.059, 0.299)
and 10-year integrated discrimination index (0.041; 95% CI 0.007, 0.083).

CONCLUSIONS

Adding the CKD protein risk score to a validated clinical risk model significantly im-
proved the discrimination and reclassification of CKD risk in patients with diabetes.

Chronic kidney disease (CKD) is a major and growing global health challenge, affect-
ing �10% of adults worldwide (1). The substantial health care costs associated
with CKD, along with the looming threat of end-stage kidney disease resulting from
CKD, impose a significant financial burden on both individuals and society (2,3). Dia-
betes is one of the key risk factors for CKD (1,4). Hence, early identification of modi-
fiable risk factors is essential to prevent or delay the development of CKD in patients
with diabetes and has important public health implications.
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Polygenic risk scores, incorporating se-
quence variants, show promise in improv-
ing screening and prevention efforts (5).
However, the clinical applicability of poly-
genic risk scores in assessing CKD risk in
patients with diabetes needs to be vali-
dated through prospective studies.
Proteins play a crucial role in regulating

biological processes by integrating genetic
effects with environmental, age-related,
comorbidity-related, behavioral, and drug-
related factors (6,7). The potential of pro-
teomic profiling lies in its ability to unveil
novel biomarkers that may precede the
onset of CKD. As structural components
within tissues, organs, and organisms, pro-
teins mediate a wide range of biochemical
activities related to metabolism, regula-
tion, signaling, growth, and senescence
(6,7). Some studies (8,9) have explored the
association between several circulating
proteins and the risk of CKD progression in
people with diabetic kidney disease. How-
ever, there is a lack of research on the pre-
dictive value of circulating proteins on the
risk of CKD in people with diabetes.
The Chronic Kidney Disease Prediction

Consortium (CKD-PC) has developed an
equation to predict incident CKD in people
with diabetes (10). This equation incorpo-
rates a comprehensive set of variables, in-
cluding age, sex, race/ethnicity, estimated
glomerular filtration rate (eGFR), history
of cardiovascular diseases, smoking, hy-
pertension, BMI, albuminuria, glycated
hemoglobin (HbA1c), and the use of glu-
cose-lowering drugs.We hypothesize that
enhancing the validated CKD-PC model
with a panel of multiple protein biomarkers
and capturing various pathophysiological
pathways of CKDmay significantly enhance
the accuracy of CKD risk prediction—a
hypothesis that has not been explored
to date.
In this study, we used data from the UK

Biobank and its substudy, the UK Biobank
Pharma Proteomics Project (UKB-PPP), a
large-scale proteomic investigation that
measured nearly 3,000 distinct plasma
proteins. We aimed to conduct the most
extensive proteomic analysis to date to
develop and validate a protein risk score
for predicting CKD risk in participants
with diabetes and compare the predictive
capabilities of the CKD protein risk scores,
CKD polygenic risk scores, and clinical risk
factors (CKD-PC model) of CKD in predict-
ing CKD risk in participants with diabetes.

RESEARCH DESIGN AND METHODS

UK Biobank Sample Population
The UK Biobank, established between
2006 and 2010, stands as a substantial
prospective observational study with the
primary goal of investigating the effects of
diverse exposures on health and diseases.
It recruited �500,000 adult participants
aged 37 to 73 from 22 assessment centers
across the U.K. The enrollment procedure
encompassed participants completing a
touch-screen questionnaire, taking physi-
cal measurements, and providing biologi-
cal samples. Detailed information on the
study’s design and data collection proce-
dures can be found in previous publica-
tions (11). Ethical approval was obtained
from the North West Multi-centre Re-
search Ethics Committee (Haydock, U.K.),
and all participants provided signed in-
formed consent.
The UKB-PPP involved the collabora-

tion of 13 biopharmaceutical companies
contributing funding for blood-based pro-
teomic data generation (12). An algo-
rithm to define prevalent diabetes was
developed by Eastwood et al. (13), which
used information including self-reported
medical conditions (Field IDs in the UK Bi-
obank: 4041, 6177, 6153, 2976, 22986,
20002, and 20009) and medications (Field
IDs in the UK Biobank: 20003) to define
prevalent diabetes and its type (type 1 di-
abetes or type 2 diabetes). Of the 3,362
participants with diabetes (defined as
prevalent diabetes or HbA1c $6.5%) in
the UKB-PPP, those who lacked informa-
tion on kidney disease status or had CKD
at or before baseline (eGFR<60 mL/min/
1.73 m2, urine albumin-to-creatinine ratio
[UACR] $30 mg/g, or a history of CKD),
or had missing genetic data, $10 third-
degree relatives, mismatched self-reported
and genetic sex, and missing covariates in
CKD-PC models, were further excluded.
The included participants were randomly
divided into a training cohort (n = 1,047)
and a test cohort (n = 1,047) (Supple-
mentary Fig. 1).

Clinical Risk Factors
Clinical risk factors incorporated into the
CKD-PC model (10) included age, sex, race,
eGFR, history of cardiovascular disease,
smoking status, hypertension, BMI, UACR,
HbA1c, and the use of glucose-lowering
drugs.
The collection and processing of baseline

blood and urine samples was previously

reported and validated (14). Serum creati-
nine level was measured by enzymatic
analysis on a Beckman Coulter AU5800,
and eGFRwas calculated using the Chronic
Kidney Disease Epidemiology Collabora-
tion (CKD-EPI) equation based on serum
creatinine (15). Urine albumin and urine
creatinine were measured on a Beckman
Coulter AU5400 by immunoturbidimetric
analysis and enzymatic analysis, respec-
tively. UACR was calculated from urinary
albumin and creatinine measurements.
The HbA1c assay was performed using a
high-performance liquid chromatography
method (Bio-Rad Variant II Turbo analyzer,
Bio-Rad Laboratories). Detailed information
on covariates, such as age, sex, smoking,
and the use of glucose-lowering drugs and
angiotensin converting enzyme (ACE) in-
hibitors, was obtained through standard-
ized questionnaires. BMI was calculated
as weight divided by height in meters
squared. Baseline history of cardiovascular
disease was defined as self-reported or
physician-diagnosed stroke, coronary heart
disease, and heart failure. History of hyper-
tension was defined as a systolic/diastolic
blood pressure $140/90 mmHg or self-
reported or physician-diagnosed hyperten-
sion. Further details about these measure-
ments can be found in the UK Biobank
online protocol (www.ukbiobank.ac.uk).

Proteomics Measurements
The details of the Olink proteomics assay,
data processing, and quality control pro-
cedures have been previously described
(12). In brief, blood plasma underwent
proteomic profiling using the antibody-
based Olink Explore 3072 proximity ex-
tension assay, measuring 2,941 protein
analytes and capturing 2,923 unique pro-
teins. The UKB laboratory team executed
the randomization and plating of all
samples before delivery. The processing
of these samples occurred across three
NovaSeq 6000 Sequencing Systems. Olink’s
facilities implemented rigorous quality con-
trol measures. Sample controls are used to
determine precision within and between
plates, and plate controls are used to stan-
dardize protein levels within a plate (12).
After normalization of protein concentra-
tions, inverse-rank normalized protein ex-
pression values were derived for each
protein in each participant. These normal-
ized protein expression values, measured
on a log2 scale, represent Olink’s relative
protein quantification unit.
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Protein Risk Score Development
The development of the protein risk score
involved the use of a training set that ac-
counted for 50% of the total participants
(1,047 participants; 117 events) for train-
ing. The remaining 50% of participants
(1,047 participants; 112 events) were re-
served for testing the protein risk score
(a test set).
To enhance the robustness of the pre-

diction models, proteins with >20% miss-
ing were excluded (n = 12). The remaining
2,911 proteins with missing measurements
were mean-imputed in the training set,
and the mean values of the training set
were applied to impute the missing mea-
surement of protein in the test set. Of
the remaining 2,911 proteins, we first as-
sessed the association between a single
protein and the risk of incident CKD in
the training set, adjusting for age, sex,
race, eGFR, UACR, HbA1c, diabetes dura-
tion and types, and use of ACE inhibitor.
A Cox proportional hazardmodel was con-
structed with those proteins that were
statistically significant after Bonferroni
correction, age, sex, and race as covari-
ates in the training set. Model selection
used a least absolute shrinkage and selec-
tion operator penalty with 10-fold cross-
validation to determine the penalization
strength and the number of variables to
be included in the model. The coeffi-
cients for the remaining proteins were
extracted from the model when the pe-
nalization strength was set to the point
where the smallest partial likelihood
deviance was achieved. Subsequently,
the CKD protein risk score was calcu-
lated for those participants in the test
set as the weighted sum of the remain-
ing proteins with their corresponding
coefficients. The sign of corresponding
weight (negative for protective factors
and positive for harmful factors) ac-
counts for the effect directionality of
the protein in the CKD protein risk
score.

Genetic Scores of CKD
Comprehensive details about genotyp-
ing, imputation, and quality control pro-
cedures in the UK Biobank study have
been previously documented (16). A
polygenetic risk score for CKD was con-
structed based on a previous study (5),
incorporating 39 single nucleotide poly-
morphisms (SNPs). The CKD polygenetic
risk score was calculated using a weighted
method:

Polygenic risk score ¼ �S
M

j¼1
bj � SNPM;

where each SNP was recoded as 0, 1, or
2 based on the number of risk alleles.
The list of SNPs used and their effects is
provided in Supplementary Table 1. A
higher polygenetic risk score indicates a
greater genetic predisposition to CKD.

Study Outcome
The study outcome was incident CKD, de-
fined using the International Classification
of Diseases 9th Revision codes 585 and
5859, ICD-10 codes I12.0, I13.1, I13.2,
N18.0, N18.3, N18.4, N18.5, N18.8, and
N18.9, and the Office of Population Cen-
suses and Surveys Classification of Interven-
tions and Procedures, version 4 (OPCS-4),
code M01 (17,18). The follow-up period for
each participant was calculated from the
date of the first assessment until the first
date of incident CKD diagnosis, date of
death, date of loss to follow-up, or the end
of follow-up, whichever came first.
In the sensitivity analysis, incident CKD

was also defined using the “first occurrence
fields” mapped to the three-character
ICD-10 code N18 in the UK Biobank. The
“first occurrence fields” delineate each
health outcome using the three-character
codes within ICD-10’s diagnostic chapters
across primary care, hospital inpatient
data, and death data (https://biobank
.ndph.ox.ac.uk/ukb/label.cgi?id=1712).

Statistical Analysis
A Cox proportional hazard model was
used to estimate hazard ratios (HRs) and
95% CIs for the risk of incident CKD asso-
ciated with CKD protein risk score (per SD
increment). Using R package pmsamp
size, given the C-index as 0.802 (10), the
mean follow-up of 11.3 years in the current
study, and 16 predictor parameters in the
new prediction model, the minimum sam-
ple size was 522 (19). Model discrimination
was evaluated using Harrell C-indices, with
bootstrapping applied for estimating the
CIs. Statistical testing for nested models re-
lied on changes in model deviance based
on log partial likelihood. The 10-year con-
tinuous net reclassification improvement
(NRI) and integrated discrimination im-
provement (IDI) were used to address po-
tential finer increments in reclassification
(20,21). Bootstrapping was used for esti-
mating CIs in these assessments. The Data-
base for Annotation, Visualization and

Integrated Discovery (DAVID) (https://
david.ncifcrf.gov/) under the default pa-
rameters was used to perform functional
enrichment analysis.
All statistical analyses were conducted

using R software, with two-sided hypothe-
sis tests, and P values <0.05 were consid-
ered statistically significant unless specified
otherwise.

RESULTS

Of the 2,094 participants included in the
study, 1,305 (62.3%) were men. In both
the training and test sets, �94% of the
participants had type 2 diabetes, and 6%
had type 1 diabetes. Compared with par-
ticipants with type 1 diabetes, those with
type 2 diabetes were older, and had lower
eGFR, lower HbA1c, and shorter diabetes
duration (Supplementary Table 2).
Over a median follow-up of 12.1 years,

229 individuals experienced incident CKD
events, including 117 in the training co-
hort and 112 in the test cohort. Partici-
pants in the training cohort and test
cohort demonstrated similar characteris-
tics (Table 1). Compared with participants
without incident CKD events, those with
incident CKD events were older and had
lower eGFR, higher UACR, and a higher
prevalence of cardiovascular disease (Sup-
plementary Table 3).
Of the 2,911 proteins, 12 proteins re-

mained statistically significant (P< 0.05) af-
ter Bonferroni correction (Supplementary
Table 4 and Supplementary File 2). Sup-
plementary Fig. 2 shows the Spearman
rank correlation between the 12 proteins.
When the penalization strength of least ab-
solute shrinkage and selection operator re-
gression was set to achieve the smallest
partial likelihood deviance, 11 proteins
were selected (Supplementary Fig. 3 and
Supplementary Table 5). Therefore, the
CKD protein risk score was computed as
the weighted sum of those 11 proteins.
Gene set enrichment analysis using DAVID
(22) identified cytokine–cytokine receptor
interaction and innate immune response
as pathways enriched among the 11 pro-
teins (Supplementary Fig. 4). All 11 pro-
teins were replicated within the test set
except for 1 with marginal significance
(Supplementary Table 6). In the test set,
after adjusting for the CKD-PC risk factors
and the CKD polygenic risk score, the CKD
protein risk score was significantly posi-
tively associated with the risk of incident
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CKD (per SD increment; HR 1.78; 95% CI
1.44, 2.20) (Table 2).
In the evaluation of CKD risk prediction

performance, compared with the basic
model (age 1 sex 1 race, C-index 0.627;
95% CI 0.578, 0.675), the CKD protein risk
score (C-index 0.748; 95% CI 0.704, 0.793;
C-index increase 0.122; 95% CI 0.071,
0.177) and the CKD-PC risk factors (C-index
0.802; 95% CI 0.762, 0.841; C-index increase
0.175; 95% CI 0.126, 0.217) significantly im-
proved the prediction performance of inci-
dent CKD, but the CKD polygenic risk score
(C-index 0.634; 95% CI 0.586, 0.682; C-index
increase 0.007; 95% CI �0.016, 0.025) did
not show significant improvement perfor-
mance (Table 3).
When the CKD polygenic risk score was

added to the CKD-PC risk factors (C-index
increase 0.000; 95% CI �0.005, 0.005)
and the CKD protein risk score (C-index in-
crease 0.005; 95% CI �0.005, 0.014),
there was no significant increase in dis-
crimination of CKD risk (Table 3). How-
ever, adding the CKD protein risk score
into the model with the CKD-PC risk fac-
tors (C-index from 0.802 to 0.825; C-index
increase 0.023; 95% CI 0.006, 0.044) or
the CKD polygenic risk score (C-index
from 0.634 to 0.754; C-index increase

0.120; 95% CI 0.072, 0.176) resulted in a
significant increase in the C-index of CKD
risk. The combination of the CKD-PC risk
factors and the CKD protein risk score
demonstrated the highest predictive per-
formances for CKD risk with a C-statistic
of 0.825 (95% CI, 0.789, 0.861) (Table 3).
Adding the CKD protein risk score to

the basic model (age1 sex1 race) signif-
icantly improved the continuous 10-year
NRI (80 events during the 10-year follow-
up; 0.361; 95% CI 0.266, 0.483) and
10-year IDI (0.083; 95% CI 0.048, 0.130)
for CKD risk. Incorporating the CKD pro-
tein risk score into the model with the
CKD-PC risk factors also led to a signifi-
cant improvement in the continuous
10-year NRI (0.199; 95% CI 0.059, 0.299)
and 10-year IDI (0.041; 95% CI 0.007,
0.083) for CKD risk (Table 3). When the
CKD risk threshold was set at 5.5% (half
of the CKD incident rate in the study),
adding the CKD protein risk score to the
CKD-PC risk factors correctly reclassified 1
event and 25 nonevents.
When the CKD protein risk score was

computed using proteins with the top
five weights, adding the CKD protein risk
score into the CKD-PC risk factors had a
C-index of 0.817 (C-index from 0.802 to

0.817; difference 0.016; 95% CI 0.002,
0.032) and significantly improved the con-
tinuous 10-year NRI (0.189; 95% CI 0.063,
0.338) and 10-year IDI (0.030; 95% CI 0.006,
0.070) (Supplementary Table 7). Similar re-
sults were observed when incident CKD
was defined by the “first occurrence fields”
mapped to the three-character ICD-10 code
N18 in the UK Biobank (Supplementary
Table 8) or when the study population was
restricted to those with type 2 diabetes
(Supplementary Table 9).

CONCLUSIONS

In this study, we developed and validated
a protein risk score using circulating pro-
teins within a sizable cohort of patients
with diabetes. When integrated into the
previously validated CKD-PC model, the
CKD protein risk score showed significant
improvement in predicting CKD events in
patients with diabetes.
Some studies (8,9) have explored the

relationship of several circulating pro-
teins with the risk of CKD progression in
participants with diabetic kidney disease.
There are still gaps in understanding the
relationship between nontargeted pro-
teins and the risk of CKD in patients with
diabetes and whether these circulating

Table 1—Baseline characteristics of study population

Total participants
(N = 2,094)

Training set
(n = 1,047)

Test set
(n = 1,047) P value

Age, years 59.4 (7.3) 59.5 (7.4) 59.4 (7.3) 0.848

Sex, n (%) 1,305 (62.3) 657 (62.8) 648 (61.9) 0.718

Black, n (%) 94 (4.5) 54 (5.2) 40 (3.8) 0.170

BMI, kg/m2 31.0 (5.7) 31.0 (5.7) 31.0 (5.6) 0.923

Ever smoker, n (%) 1,006 (48.0) 489 (46.7) 517 (49.4) 0.238

eGFR, mL/min/1.73 m2 92.2 (13.0) 92.6 (13.0) 91.7 (13.1) 0.110

UACR, mg/g 10.0 (6.2) 10.1 (6.3) 9.8 (6.2) 0.253

HbA1c, mmol/mol 53.1 (13.7) 53.0 (13.2) 53.2 (14.3) 0.718

Diabetes duration, years 6.0 (2.8, 10.5) 5.5 (2.5, 10.8) 6.0 (3.0, 10.4) 0.570

Type 1 diabetes, n (%) 126 (6.0) 62 (5.9) 64 (6.1) 0.927

ACE inhibitor, n (%) 744 (35.5) 361 (34.5) 383 (36.6) 0.338

Glucose-lowering drug, n (%) 0.956

Insulin medication 353 (16.9) 179 (17.1) 174 (16.6)
Oral medication 912 (43.6) 454 (43.4) 458 (43.7)
No medication 829 (39.6) 414 (39.5) 415 (39.6)

Prevalent disease, n (%)

Cardiovascular disease 410 (19.6) 205 (19.6) 205 (19.6) 1.000
Hypertension 1,696 (81.0) 835 (79.8) 861 (82.2) 0.164

Incident CKD, n (%) 229 (10.9) 117 (11.2) 112 (10.7) 0.779

Data are presented as mean (SD) or median (interquartile range), unless indicated otherwise as n (%).
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proteins can enhance the prediction of
CKD risk. Our study addresses this gap by
investigating a larger number of nontar-
geted circulating proteins in a prospec-
tive cohort, revealing that the CKD
protein risk score significantly improves
the prediction of incident CKD in patients
with diabetes. After adjusting for varia-
bles in the CKD prediction model of CKD-
PC for patients with diabetes (10) and the
CKD polygenic risk score, the CKD protein
risk score was significantly positively associ-
ated with the risk of incident CKD. Of note,
in this study, the prediction performance of

the CKD polygenic risk score was signifi-
cantly weaker than that of the CKD protein
risk score in participants with diabetes. Pre-
vious studies have consistently shown that
some genetic variants are significantly as-
sociated with CKD in participants without
diabetes but not in those with diabetes
(23). In addition, the genetic variants asso-
ciated with CKD, either as individual SNPs
or polygenetic risk score, could not im-
prove the prediction of CKD given by clini-
cal data in participants with and without
diabetes (24).Therefore, due to the limita-
tions of the polygenetic risk score in

predicting diseases with multiple modifi-
able risk factors, enthusiasm for using the
polygenetic risk score should be tempered
(24,25).
The mean C-statistics of the CKD-PC pre-

diction model for patients with diabetes
was 0.801 (interquartile range 0.750–0.819)
in the previously reported 5-year specific
risk of incident CKD (10), and 0.802 in our
current study, suggesting that the perfor-
mance of the CKD-PC prediction model in
patients with diabetes is robust. After add-
ing the CKD protein risk score to the CKD-
PC model for participants with diabetes,

Table 2—Association between protein risk score of CKD and the risk of incident CKD in the test cohort

Exposure Covariates N/events Adjusted HR per SD (95% CI)

Protein risk score 1,047/112
Model 1 Age, sex, race 2.23 (1.87, 2.66)
Model 2 Age, sex, race, polygenic risk score of CKD 2.21 (1.85, 2.63)
Model 3 CKD-PC risk factorsa 1.79 (1.45, 2.21)
Model 4 CKD-PC risk factors,a polygenic risk score of CKD 1.78 (1.44, 2.20)

aCKD-PC risk factors represent those variables included in the CKD-PC model, including age, sex, race, eGFR, history of cardiovascular disease,
never smoking, hypertension, BMI, UACR, HbA1c, the use of glucose-lowering drugs, and the interaction of HbA1c and the use of glucose-
lowering drugs.

Table 3—Performance of risk prediction models for incident CKDa

Model C-index (95% CI)
C-index increase

(95% CI)
10-year IDI improvement

(95% CI)
10-year continuous

NRI (95% CI)

Age 1 sex 1 race 0.627 (0.578, 0.675)

Reference model: age 1 sex 1 race

Age 1 sex 1 race 1 CKD polygenic
risk score

0.634 (0.586, 0.682) 0.007 (�0.016, 0.025) 0.002 (0.000, 0.009) �0.009 (�0.119, 0.118)

Age 1 sex 1 race 1 CKD protein
risk score

0.748 (0.704, 0.793) 0.122 (0.071, 0.177) 0.083 (0.048, 0.130) 0.361 (0.266, 0.483)

CKD-PC risk factors 0.802 (0.762, 0.841) 0.175 (0.126, 0.217) 0.133 (0.086, 0.227) 0.485 (0.352, 0.587)

Reference model: age 1 sex 1 race 1
CKD polygenic risk score

Age 1 sex 1 race 1 CKD polygenic
risk score 1 protein risk score

0.754 (0.710, 0.798) 0.120 (0.072, 0.176) 0.081 (0.043, 0.133) 0.362 (0.246, 0.465)

Reference model: age 1 sex 1 race 1
CKD protein risk score

Age 1 sex 1 race 1 CKD polygenic
risk score 1 protein risk score

0.754 (0.710, 0.798) 0.005 (�0.005, 0.014) 0.000 (�0.004, 0.012) �0.013 (�0.251, 0.157)

Reference model: CKD-PC risk factors

Age 1 sex 1 race 1 CKD polygenic
risk score

0.634 (0.586, 0.682) �0.168 (�0.211, �0.121) �0.131 (�0.225, �0.084) �0.454 (�0.577, �0.305)

Age 1 sex 1 race 1 CKD protein
risk score

0.748 (0.704, 0.793) �0.053 (�0.094, �0.000) �0.050 (�0.131, �0.008) �0.170 (�0.353, �0.002)

CKD-PC risk factors 1 CKD polygenic
risk score

0.802 (0.763, 0.842) 0.000 (�0.005, 0.005) �0.000 (�0.003, 0.010) �0.027 (�0.134, 0.150)

CKD-PC risk factors 1 CKD protein
risk score

0.825 (0.789, 0.861) 0.023 (0.006, 0.044) 0.041 (0.007, 0.083) 0.199 (0.059, 0.299)

aCKD-PC risk factors represent those variables included in the CKD-PC model, including age, sex, race, eGFR, history of cardiovascular disease,
never smoking, hypertension, BMI, UACR, HbA1c, the use of glucose-lowering drugs, and the interaction of HbA1c and the use of glucose-
lowering drugs.
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the discrimination and reclassification of
CKD risk in patients with diabetes was sig-
nificantly improved, suggesting that the
CKD protein risk score has important clini-
cal application value in predicting CKD
risk in people with diabetes. Possible ex-
planations include that proteins are more
closely linked to the pathogenesis of dis-
ease than traditional risk factors and that
multiprotein models accurately capture
the biological effects of beneficial or harm-
ful exposures on disease risk (26). There-
fore, in patients with diabetes, the CKD
protein risk score can supplement tradi-
tional risk factors and genetic information
for CKD, help clinicians to better identify in-
dividuals at high risk for CKD, and promote
early monitoring and prevention.
Of the 11 proteins included in the CKD

protein risk score, the coefficients of
growth/differentiation factor 15 (GDF15),
IGF-binding protein 4 (IGFBP4), neutrophil
gelatinase-associated lipocalin (NGAL),
RNase K6 (RNASE6), and C-type lectin do-
main family 4 member D (CLEC4D) ranked
in the top five. GDF15 belongs to the trans-
forming growth factor-b cytokine super-
family and has been reported to be
associated with a higher risk of renal
events in patients with type 2 diabetes
(27). IGFBP4 binds to both IGF-I and -II.
Previous studies have found an inverse
relationship between IGFBP4 and eGFR
(28), and IGFBP4 was significantly higher
in patients with diabetic kidney disease
(29). NGAL, an acute reactive protein se-
creted by neutrophils and expressed in
the kidney’s medullary tubules (30), has
been identified as a biomarker for pre-
dicting acute kidney injury (31) and is
highly expressed in response to tubular
injury (32). In addition, RNASE6 is predom-
inantly found in monocytes and neutro-
phils, which can be triggered by bacterial
infections and exhibit antibacterial activity
(33). It is speculated that RNASE6 aggra-
vates glomerular injury in diabetic ne-
phropathy through the renal mononuclear
phagocytosis system (34). As a member of
the C-type lectin/C-type lectin-like domain
superfamily, CLEC4D functions as a pattern
recognition receptor within the innate im-
mune framework, identifying both dam-
age-associated and pathogen-associated
molecular patterns from bacterial origins
(35,36), and it is also integral in mediating
cellular adhesion, intercellular communica-
tion, and the modulation of inflammatory
and immune responses (37). Moreover,
CLEC4D expression has been positively

correlated with neutrophilic presence and
implicated in the promotion of neutrophil
extracellular trap formation pathways (38),
a process linked to the pathogenesis of
proteinuria (39).
Despite these insights, our study has

some limitations. First, the observed varia-
tion in protein analyte levels across different
measurement technologies (40) suggests
that our findings should be validated across
various panels in future studies.
Second, the UK Biobank is composed

primarily of individuals with European an-
cestry, warranting future investigations
to assess the translation of the protein
risk score across diverse populations and
ethnicities.
Although we have described the im-

portant clinical value of proteomics in
predicting CKD risk in people with diabe-
tes, these proteins are not easily mea-
sured in routine clinical chemistry and are
relatively expensive to detect, making it
relatively difficult to translate these re-
sults into clinical practice. However, with
the rapid advancement of protein detec-
tion technology, the cost of detection is
expected to decline rapidly, and the ac-
cessibility will rapidly improve.
Finally, using a test set for CKD predic-

tion from the same population as the one
to derive the protein risk score may lead
to an overestimation of predictive perfor-
mance. Further validations outside this
cohort would be good to be able to use
these as risk protein markers.

Conclusion
We developed and validated a protein
risk score for CKD risk from large-scale
proteomics as a robust and independent
predictor of incident CKD in people with
diabetes, which significantly improved the
discrimination and reclassification of CKD
risk in patients with diabetes, either in
combination with age and sex or when
added to a validated clinical risk model
for CKD. Blood detection of biomarkers is
objective, quantifiable, and convenient,
whereas the collection of clinical factors
is relatively cumbersome, requiring re-
ports or medical records from partici-
pants and multiple tests such as physical
examinations, blood tests, and urine tests.
With the rapid development of protein de-
tection technology, our findings highlight
the important clinical value of proteomic
analysis, especially combining proteomic
analysis with clinical information to screen

at-risk populations and better predict CKD
risk, thereby promoting early monitoring
and prevention in people with diabetes.
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